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Abstract—An infinitesimal. orthotropic theory of viscoplasticity based on overstress for thermo-
mechanical loading (TVBO) is presented. The total strain rate is the sum of elastic. inefastic and
thermal strain rates. An orthotropic constitutive law is postulated for each strain rate using the
characteristics of orthotropic matrices and previous isotropic formulations of the viscoplasticity
theory as a guide. All material functions and constants can be functions of current temperatyre and
no influence of temperature history is modeled. Yield surfaces and loading/unioading conditions
are not used in the theory in which the inelastic strain rate is solely a function of the overstress, the
difference between stress and the equilibrium stress, a state variable of the theary. A comparatively
simple theory is obtained which is capable of modeling important phenomena like creep, relaxation,
ratc scnsitivity. hysteresis, tension/compression asymmetry and nearly clastic regions. It is also
possible to model quasiclastic behavior in one direction while the others behave viscoplastically.
The theory is shown to reduce to a previously proposed formulation for inelastic incompressibility
and sotropy,

INTRODUCTION

Continuing demands to increase cfficiency and economy of engineering structures require
that the inclastic load carrying capabilitics of materials be utilized. This is especially so for
components of propulsion and power generation machinery which operate at elevated
temperature. They have to be designed against creep and creep/fatigue failure due to the
existence of nonlincar creep deformation and due to large and small temperature cycles
which are repeated during the lifetime of a component. A prerequisite for a successful
design is the ability to compute the time-dependent deformations as a function of location
and time in severely loaded components.

For nominully isotropic materials, the inclastic and thermomechanical analysis of
components is now being performed but is still under development. For the case of aniso-
tropic materials such as single erystal superalloys, directionally solidified alloys and metal
matrix composites, anisotropy is added to the list of complicated phenomena which must
be modeled. All of these analytical methods are inherently nonlinear and require numerical
miethods for their implementation. Fortunately, the growths of computing power and
cconomy make possible nonlincar analyses in the design of critical and severely stressed
components,

The isothermal methods of anisotropic inelastic analysis range from yield surface
approaches (Lee and Zaverl, 1978 ; Eisenberg and Yen, 1981, 1984) to phenomenological
formulations using *"unified™” theories (Stoufler and Bodner, 1979 ; Robinson, 1983 ; Dame,
1985 ; Sutcu, 1985 Sutcu and Krempl, 1986, 1990 ; Walker and Jordan, 1989). Dame (1985)
and Walker and Jordan (1989) used a “crystallographic™ approach where the constitutive
equation of each slip system in a cubic crystal was given by the “unified™ constitutive
equation of the respective authors. Following the classical methods of single crystal plasticity
the overall response was obtained by summing up the contributions of each slip system.

The present infinitesimal thermomechanical theory is intended for application to aniso-
tropic cngincering alloys for high temperature service in the power gencration and pro-
pulsion industries. The intention is to present a theory which can model essential macro-
scopic phenomena with the least possible complexity. The behavior of these alloys, which
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include single crystals. directionally solidified alloys and metal matrix composites. is often
very complex. As an example, some alloys may exhibit a strength increase over a limited
temperature range or may show tension/compression asymmetry. As a consequence the
formulation does not start from the notion of an Arrhenius relation between temperature
and strain rate. Any temperature dependence is allowed.

In theoretical treatments, the use of a thermodynamic potential provides consistency
and conciseness and many known constitutive equations can be derived. When new material
laws are the aim. the thermodynamic approach is not directly useful as the means of
experimentation provide measures for stress and strain but not for potentials. Also. as a
minimum, the potential and the growth laws for the state variables have to be postulated
before the mathematical formalism can be employed. In the present approach. the consti-
tutive equation for the inelastic strain rate (the flow law), and the growth laws for the state
variables are postulated. The number of postulates is the same in both cases. After the
stress—strain laws are established, the thermodynamic potentials can be constructed.

Rather than using representation theorems and coordinate-free notation (Sutcu. 1985
Sutcu and Krempl, 1986), material matrices are employed. Representation with respect to
the preferred material axis is assumed. For orthotropy. the matrices are symmetric and
have nine independent constants. Elastic and inelastic Poisson’s ratio matrices which
depend only on temperature are introduced in the generalization of the previously proposed
isotropic viscoplasticity based on overstress (VBO) (Yao and Krempl, 1985 Krempl et
al., 1986 Krempl. 1987). Compressible and incompressible inelastic deformations are
considered. The orthotropic theory contains transverse isotropy, cubic symmetry and iso-
tropy as special cases.

ORTHOTROPIC THEORY OF VISCOPLASTICITY BASED ON OVERSTRESS FOR
THERMOMECHANICAL DEFORMATION (TVBO)

For the representation of the equations, vector notation is used where stress tensor
components a,, and the small strain tensor components ¢, are related to thar vector
components by

0, =0, O, =03, 0Oy=0y, 0,=0,, 0 =03, 0,=0;,,
and
Ly = £y, L2 = £a3, £y =£Eyy, &g =280, &5 =2y, &, = 2i,,

respectively.

Capital boldface letters denote 6 x 6 matrices. The components of these matrices are
given with respect to the on-axis, xyz Cartesian coordinate system which coincides with the
material symmetry axes, or with respect to an off-uxis, 123 coordinate system. The com-
ponents are identified by the respective subscripts x, v, = or 1, 2, 3. An orthotropic matrix
is symmetric and has nine independent components, see eqn (1.12) of Christensen (1979).

Vectors and matrices are primed and unprimed when referring to the 123-system and
xyz-system, respectively. All constants and functions can depend on T— T, where Tis the
absolute temperature and T, is a reference temperature. The temperature dependence is
not specially displayed.

The formulation given below represents cyclic neutral behavior and does not include
rccovery of state and aging. As a consequence two tensorial state variables and their growth
laws are needed. The modeling of cyclic hardening/softening requires additional state
variables. These extensions will be proposed in a future paper.

The flow law
In the context of an infinitesimal theory, the total strain rate, dg’;dr. 1s considered to
be the sum of elastic, de’'/ds, inelastic, de"/d¢. and thermal strain rates. de’"/d,
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& = éfel+é'in+é'lh‘ (l)
where the sum of the elastic and inelastic strain rate is called the mechanical strain rate,
é'mc = s'lcl+e-'in- (2)

A superposed dot represents the total time derivative, d/dr.
For each strain rate. a constitutive equation is postulated. The elastic strain is assumed
to be independent of thermal history, therefore,

& = ad;(N“C“‘Ma'). 3)

A superscript — | denotes the inverse of a matrix. As in the case of isotropy, the inelastic
strain rate is only a function of the overstress x. [t denotes the difference between the stress
o and the equilibrium stress g. a state variable of the theory,

£ =N"'K~-'Mx". 4
The thermal strain rate is given by
i =N"'aT. (5)

In the above, N and M are the transformation matrices for strain and stress, respec-
tively. They are given as

e = Ne', (6)

o = Mo’ (7

The clastic modulus matrix Cis symmetric. Its components can depend on temperature.

It is written as a product of the diagonal elastic modulus matrix C, and the matrix R, of
the clastic Poisson’s ratios. The components of the first are the elastic moduli, those of the

latter are only related to Poisson’s ratios. We have

C=C4R.,, C=C; (8)

a superscript t denoting transpose of a matrix

where

Cq - )

and

84S 27-11-0
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1 - VesVay Ver + VeV, Veet VoV,
Yo Vo Vo
Vet vy, l—vov v+ VoV
Vo Vo Vo
Re= | v.+vv, vio+vgv.. I—v,v, (10
Vo Yo Vo
1
1
- l -
with
Vo = - VerVor = ViV = Vi Vie = Vo Vi Voo = Vi Ve Vi s
.:]
Vi = (i.j = x.y.z, i#j)theelastic Poisson’s ratios
‘J

for uniaxial loading in the j direction. They may only depend on temperature. The symmetry
of C requires the reciprocity relations v,/E, = v,/E, (no sum, i.j = x,y.z.i # j). [For the

form of the inversc R ', see (37).]
Stmilarly, the vicosity matrix K is given by
K=K‘Rk, K‘-_—K (ll)

where

K,

k(. (12)

. ¥y d

(square brackets enclosing a symbol denote “*function of ') and

I=nnsy Mo+l Nat ol 1
Mo Mo Mo
MoctNeelly: D =Nellee Mzt Mol
Mo Mo No
Ro= 1\ mectmdlsy Matnoee 1=1all (13)
“""ll ) W-"’“' N ;70
!
!
L

with

Mo = - Nellex — ",r:']:y -n n'q}'\' - ".\'_r"_r:n:t - n_b‘.r"x:'l:_r s

i1

El
hi = -

(i.j=x,32,

i # ) the inelastic Poisson’s ratios
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for uniaxial loading in the j direction. They may only depend on temperature. The function
&[T} has the dimension of stress x time and is the viscosity function of Krempl et al. (1986).
It is positive and decreasing and must be determined for a material. Specific functions that
fulfil the above requirements can be found in Krempl (1982) and Yao and Krempl (1985).
The symmetry of K requires 1,/K, = n,/K,, (no sum, i.j = x,y.z.i # j) and allows only a
common functional dependence of K through A[I']. see (12).

The orthotropic invariant I is given by Krempl and Hong (1989) and Sutcu and
Krempl (1990)

I = |x‘Hx+a'x]. (14)

where x = ¢ —g is the overstress, H is a dimensionless orthotropic matrix and the vector
2 =[u a, a. 0 0 0]. dimension of stress. is the repository for viscous tension/
compression asymmetry (see Sutcu and Krempl, 1990). (If a is set to zero. viscous
tension/compression symmetry results.) Again H and a are. like the elastic moduli, material
properties and must be determined for a given material.

The vector 2t =[x, a, 2. 0 0 0] denotes the coefficient of thermal expansion.

Growth laws for the state variables

Formulation. The growth law for g’ is the repository for modeling clastic regions and
hysteresis. It is given by

. Y
g =M 'B,C, 'Mé’ +TM 'g;[—,(B,,C,,")Ma'+M "(BF —=DyK, 'Mx’. (15)

The first and the last terms represent the clastic and the inclastic contributions to the growth
ol g, respectively. The term multiplied by 2T/ ensures independence of thermal history of
the clastic growth of g (see Lee and Krempl, 1990b).

The newly introduced quantities are defined as follows :

The diagonal shape function matrix B, which controls the elastic growth is

Yull] ]

'pl'l'[r]

) y.AT] | |

B, = v, {0 : (16a)
y.{r]

L il

the diagonal shape function matrix B associated with inelastic growth is

[ &.T] ]
¢,.[I]

By ¢.l]

6,40 : (165)
¢-’.\'[[-]
L ¢l |

The functions 4, ['] and ¢,[['] are positive and nonincreasing. They arc patterned after the
shape functions introduced by Krempl and Yao (1985) and Krempl et al. (1986). [Instead
of making #,; and ¢,, functions of I, they could alternatively be functions of @ defined in
(19) below.] The matrix Dy is
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D‘,:@{B:—Hﬂ(I'B.,C;’)) (!7}

with

H,

]
=
Ne

E{v ¥ J

where the E,, are the tangent moduli of the stress-inelastic strain curves at the maximum
strain of interest. They can be positive, zero or negative. The invariant @ is defined as (see
Stucu and Krempl, 1990)

O° = {z'Pz+b'z). (9

where P is an orthotropic matrix whose component have the dimension of reciprocal stress
squared and the vectorb' =[h, A, b, 0 0 O], with dimension of reciprocal stress. is
the repository for tension/compression asymmetry of the time-independent contribution to
the stress, z (sce Sutcu and Krempl, 1990). The vector z is given as

r=pg~f (20)
and
=M "H/K, 'Mx" cn

Asymptotic analyses for the uniaxial isothermal case by Krempl ¢7 al. (1986) and Sutcu
and Krempl (1989) show that df/ds determines de/dr ultimately. The purpose of (21) s to
set this slope. When tangent moduli £, are cqual 1o zero, stress -strain curves become
ultimately horizontal. In this paper the £, have to be interpreted as the slopes in a stress
plastic strain diagram at the maximum plastic strain. Substitution of (4) into (21) reveals a
form similar to the Prager-Zicgler kinematic hardening law. Therefore f is called the
kinematic variable or kinematic stress.

Restrictions an the growth laws for the state variables. In the limit as all rates go to
zero, eqns (1)-(4) show that the stress equals the equilibrium stress. It has also been shown
for the isotropic, isothermal case that the stress approaches the equilibrium stress as the
total strain rate goes to zero in the limit (Cernocky and Krempl, 1979 Krempl er af., 1986).
These facts suggest that whenever the boundary conditions require zero stress components,
the corresponding cquilibrium stress components with the initial value zero, must at all
times also be zero. (It is also possible to require that the equilibrium stress components
corresponding to the zero stress components reduce to zero only in the limit as the rates go
to zero. This approach will not be pursued here.) These conditions must hold for arbitrary
M and N. Therefore the following restrictions must be imposced on the matrices which
appear in (15) and (21). Lis the 6 x 6 identity matrix.

BdCd«l —‘:(I]l. (22

H.K ' = (p/k[TDL (23
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T L § 24
B i (29)
where

Y] T T YT _ ¥.-T] _ ¥l 25)

h=TE . TE, T E. G, G. G
_ 6T _ 6,001 _ 6011 _ 60 _ (0] _ 6.1 6

T K\'.\' N Kvy B K:: B Kv_v - Kt‘: K:x )

EI\'( E{)! EI" E{‘(x’ EIL‘ EI‘?

o I T -, (27)

The viscosity factors, K;,. have dimension stress and A[I'] has the dimension time. The
dimensionless factors ¢, and ¢ are called modified shape functions: they control the shape
of the stress-strain diagram. When these conditions are implemented. the growth laws of
the state variables are reduced to

’

oq,

. X
Y  , o (] — X 5
g =q,6 +T(’Ta +(g,—O(q.—p(l q,)))k[r}. (28)
=" x (29
K[ -

These equations replace, in consecutive order, the more complicated equations (15) and
(21). All other equations remain unchanged.

I the unrestricted equations (15) and (21) were to be used, then equilibrium stress
components could develop when there are no corresponding stress components. The “extra™
equilibrium components could cause the numerical solution to become unstable and could
lead to unexpected and unreulistic results. Examples are given by Sutcu (1985).

[t should be noted that orthotropy is maintained with (28) and (29). The orthotropic
invariants I" and © are unrestricted and they enter nonlinearly into the equations. Also the
viscosity fuctors K, can be chosen independently of the elastic moduli when ¢, # ¢..

The growth law for the equilibrium stress looks somewhat unfamiliar since it is written
in terms of stress rate and overstress. Substitution of (3) and (4) into (28) and (29), using
{25)-(27), yields the familiar forms in terms of strain rates,

g =g M ICRNE!+ (¢, —O(g, —p(1 — g IPM 'K, R, Né™

. °C, CR, ¢
-1 i) e Y el
+TM (q, 77 R.+¢,C, 3t (?TCdRc)Ns . (30)
" = pM "~ 'K,R,N&"™. (k1))

The anisotropic naturc of (30) and (31) is apparent. We have found it useful and casy to
work with (28) and (29) rather than with the familiar but complicated equations (30) and
a3n.

Reduction to plane stress/strain

Plane stress. Let a4, 0, and g be the zero stress components and let the z-axis coincide
with the 3-axis. If the initial conditions of the stress and the equilibrium stress components
with indices 3, 4 and 5 are zero. then they will always stay zero on account of (28). The
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sume argument can be made for the components of f. Therefore the stress. strain. and state
variable vectors are given by

g€ =g, & &l

o'=[0, 0. 0,

g =[9: ¢g: 4.l
f =05 12 Al (32)

The out-of-plane component of the strain is entirely determined by in-plane components
and is given by

Ei=f. = — 9—(‘—‘6 + E:"‘;(I> 7!_A <’7.“'\‘K n..X, 7 13
23 w: dr En v E“' v /\[r] K” + [\,‘*‘* +x. 1. (33)

Plane strain. In this case €;, £, and ¢4 are set equal to zero. If the initial conditions of
the stress and the equilibrium stress with indices 4 and 5 are zero, then these quantitics and
the kinematic stress will remain zero. The out-of-planc components of the stress, equilibrium
stress and kinematic stress develop and contribute to the invariants [N and ©.

DISCUSSION

General remuarks

This orthotropic TVBO not only applies to the case of variable temperature but
generalizes the simplified isothermal version with constant Poisson’s ratio, presented by
Sutcu and Krempl (1990). It will be shown below that a variable Poisson’s ratio can be
represented with the present theory, Sctting aside the thermal aspects, the present theory
differs from that given by Sutcu and Krempl (1990) by the introduction of the inclastic
Poisson’s ratio matrix R, and by the formulation of the growth laws for the cquilibrium
stress g and the kinematic variable Fin terms of stress and overstress as given by (28) and
(29). This formulation is advantageous in numerical calculations and in manipulations.
This theory retains all the properties demonstrated by Sutcu and Krempl (1990) which
includes tension/compression asymmetry, quasi-clastic behavior in one direction and visco-
plastic behavior in the other directions, orthotropic strain rate sensitivity, creep. and
relaxation. Recovery of state and aging as well as cyclic hardening/softening are not purt
of the present theory but will be incorporated in the future.

Since the formulation of the present theory assumes that the material constants are
functions of current temperature only, the asymptotic rate response and the ultimate level
of g —f arc independent of temperature history. For any history which ends up with the
same temperature and the same mechanical strain rate, the model predicts ultimately the
same stress rate response. Such behavior is reported by Chan and Lindholm (1990). It
metatlurgical changes, such as phase changes and strain aging, occur, independence of
thermal history may no longer be an adequate assumption and the model will have to be
modified to account for thermal history cffects (sce Lee and Krempl, 1990b). Independence
of thermal history implies that the constants and functions of the theory can be determined
from isothcrmal tests at a sequence of constant temperatures and then applied to thermal
loading within these temperature ranges. The partial derivatives with respect to temperature
in (15), (28) and (30), which arc introduced to model elastic deformations independent of
thermal history, will influence the transient and asymptotic behavior under temperature
changes. These are introduced in response to recent observations in the modcling of hys-
teresis under thermal and mechanical cycling (Walker, 1981 ; Moreno and Jordan. 1986
Chaboche, 1987). The implications of these terms in modeling thermomechanical behavior
are investigated systematically by Lee and Krempl (1990b).

The present theory involves two modified shape functions ¢, and ¢, and the growth
law for the kinematic variable f has only inelastic growth. But the isotropic theory proposed
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by Yao and Krempl (1985) and Krempl and Yao (1987) has one shape function and the
growth law for the kinematic variable f has both elastic and inelastic growth. When ¢, = ¢,
and K;; = E;, the elastic moduli and tangent moduli at the maximum strain of interest are
related by (27). In addition, reduction to the isotropic case makes the elastic Poisson’s ratio
equal to the inelastic Poisson’s ratio. Introducing ¢, and ¢, avoids this restriction. The
purpose of f is to set the slope at the maximum strain of interest; (29) or (31) accomplish
this goal and are simpler than the growth laws previously used. This new formulation was
also adopted by Nishiguchi ez al. (1990).

Variable Poisson’s ratio
In analogy to the definitions following (10) and (13). the actual variable Poisson’s ratio
based on strain rates is introduced as

£

y‘.,,=—-g',;, Lj=xy.2, i#j (34)
7

for the uniaxial loading in the j direction. From eqn (2) and the definitions of the elastic
and inelastic Poisson’s ratios, following (10) and (13), respectively, the actual Poisson’s
ratio can be written in terms of the elastic and inelastic Poisson’s ratios,

P& = a{v,,ef»')‘+q.»,~z}“. nosumony, ij=x,y.z, {#] 35

Since the loading is uniaxial, (35) can be expressed in terms of stress rate and overstress.
From (2), (3). (4). (12) and (35)

: (d (_‘T;) + ,.“_'f!__) = _‘f‘w (v .GJ;) + N (36)
P\dE,) T KA T &\ E,) T Kk :

(no sum on j, i,/ = x,», 2,0 # j). When the clastic and the inclastic Poisson's ratios are
given, (36) permits the calculation of the actual Poisson's ratio.

For multiaxial loading the actual variable Poisson’s ratio matrix based on rates, R,
can be written as

1 — Yy = Vxz
~Yvx 1 - */y:
=¥ — 7 I
R,'= | 37
1
boue. l B
and can be used 1o construct the mechanical strain rate vector
smc -1 d -1 '
™ = R, (—{;(C‘ o)+K;'x ). (38)

From (2), (3), (4), (10), (13), (37) and (38), a relation between R,,. R. and R, can be inferred,
-1 d -} - d —tge-1 tgy ~ 1
R. I (Cilo)+Ki'x ) = o (R'Cy ')+ Ry 'K 'x. (3%

A constant Poisson’s ratio was assumed by Sutcu and Krempl (1990). This possibility
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is contained in the present theory. For temperature-independent material properties and
v, = n,,, the Poisson’s ratio y, determined from either (36) or (39) is equal to v,.

Inelastic incompressibility, invariance of inelastic deformation under superposed pressure,
tension/compression symmetry

In the derivation of isotropic theories of rate-independent plasticity, inelastic incom-
pressibility and invariance under superposed pressure are used interchangeably to formulate
the inelastic strain as a function of the stress deviator and its invariants. When only
quadratic invariants are used. teasion’/compression symmetry follows.

Each of these conditions leads to different reductions when applied to the present
orthotropic theory.

Inelustic incompressibility. In plasticity theory it is generally assumed that the inelastic
strains are volume preserving. So far this condition has not been used. Inelastic incom-
pressibility requires

ErHEn e = 0, (40)

From (4) and (40). and since x,, x, and x. are arbitrary, the inelastic incompressibility
condition is uniquely satistied by sctting

M +’;7( = !
'I\‘r+":r = l,
N+ =L (4

Since K is symmetric [sce (11)], (41) can be expressed as

K'f K"‘(
a1 ) @

For the case of isotropy or of cubic symmetry (K., = K, = K.,), the inclastic Poisson’s
ratios are equal to 0.5 as they should be. By substituting cither (41) or (42) into (4). an
orthotropic theory for inclastic incompressibility is obtained. Note, however, that the
growth laws (28) and (29) must be used. The matrix R, docs not exist and (30) and (31)
are not useful,

Invariance of inelastic deformation under superposed pressure. Invariance of the inclastic
deformation under superposed pressure requires that (41) or (42) hold in addition to

Ho +H,+H.=0,

H +H, +H.=0,

H.+H.+H.=0 (43)
and

a,+a,+a, =10 (44)
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as well as similar conditions on P and b. Note that invariance under superposed pressure
requires inelastic incompressibility but does not imply tension/compression symmetry.

Tension/compression symmetry. By setting a = 0 and b = 0, tension/compression sym-
metry can be modeled. This condition can be applied whether or not inelastic incom-
pressibility or invariance of inelastic deformation under superposed pressure is represented.

Reduction to isotropy

In this case all orthotropic matrices are replaced by the corresponding isotropic ones
as shown in the Appendix. There are two independent elastic moduli, two independent
inelastic constants (the viscosity function and the inelastic Poisson’s ratio), two shape
functions (¢ could be set equal to ¢). one tangent modulus, two isotropic invariants, and
the coeflicient of thermal expansion. The model consists now of (1). (3). (4). (5}, (14), (19),
and (28), (29) with all the orthotropic matrices replaced by the corresponding isotropic
ones.

To show that the isotropic model derived from the orthotropic version corresponds to
the one initially proposed by Yao and Krempl (1985), the isotropic version is written in
terms of deviatoric and hydrostatic components in the Appendix. In this version the
condition of inelastic incompressibility has not yet been invoked and therefore all deviatoric
and hydrostatic components can be calculated.

Inelastic incompressibility. Sctting = 0.5 in (A8) invokes the inclastic incom-
pressibility condition and renders x,, indeterminate in (A7). However, the growth laws for
the hydrostatic component of g and @ in (A10) and (A6), respectively, permit the deter-
mination of x,. With x, known, f, can be calculated from (A12), The present theory permits
the calculation of all hydrostatic components in the presence of inclastic incompressibility.
This is accomplished by the “stress formulation™ of the growth laws for g and f adopted in
(28) and (29). respectively.

Even if inclastic incompressibility is assumed by setting g = 0.5, the model can stili
predict a superposed hydrostatic pressure effect for inclastic deformation and tension/
compression asymmetry through the invariants [T and ©. Generally, it is assumed that
inclustic incompressibility or tension/compression symmetry are synonymous,

Inelastic invariance under superposed pressure. To have the inelastic strain invariant
under superposed pressure, we have to require that n = 0.5, ¢« =0, H,=3H,, b =0 and
Py = 3P,. In this case inelastic incompressibility and tension/compression symmetry follow.
With these stipulations, the invariants I and © become second invariants of deviators.

Tensionfcompression symmetry. To model tension/compression symmetry of inelastic
deformation alone, a = 0 and b = 0 are required.

Retation 1o previously proposed isotropic theory, When invariance under superposed
pressure is invoked (which results in tension/compression symmetry), the equations of the
Appendix reduce to the theory presented by Yao and Krempl (1985) and Krempl and Yao
(1987) with the exception of the growth laws for g and f. Yao and Krempl (1985) write
eqns (1)-(10) without a distinction between elastic and inelastic Poisson's ratios. Poisson's
ratio was set equal to 0.5 after the equations had been reduced to component forms. The
indeterminacy of eqn (15) of Yao and Krempl (1985) for this case was therefore not realized.
The equations given by Krempl and Yao (1987) distinguish between clastic and inclastic
Poisson’s ratios in the flow law, but use the value 0.5 for the growth laws of g and f, see
(1,2) of Krempl and Yao (1987).

The difference between the present formulation and the one of Krempl and Yao (1987)
is evident by examining (A14) and (A15). By setting y = v = 0.5 in (A14), eqn (A15) is
obtained except for the direction of the last term. It is in the direction of the inelastic strain
rate in the present theory, but in the direction of the difference between the deviators of the
equilibrium stress and the kinematic stress in Krempl and Yao (1987). The formulation
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similar to (A14) was introduced by Sutcu (1985) for mathematical convenience after it had
been shown in some numerical experiments for the uniaxial case that the two formulations
in Sutcu (1985) and Krempl and Yao (1987) differed insignificantly. The differences for
multiaxial loading need to be explored. It is interesting to note that a similar modification
was introduced by Burlet and Cailletaud (1987) in the context of the growth law for the
backstress in a rate-independent formulation.

The consistent formulation in terms of elastic and inelastic Poisson’s ratios which leads
to (A14) was independently proposed by Nishiguchi (see Nishiguchi ez ai., 1990).

Maodeling of real material behavior

Papers by Krempl and Hong (1989) and Lee and Krempl (1988. 1990a) deal with the
numerical simulation of metal matrix composites under isothermal and variable temperature
conditions. Therefore no applications are given here.

The present theory generalizes the theory introduced in Krempl and Hong (1989) to
the cases of variable Poisson’s ratio and temperature. [t is shown in Krempl and Hong
(1989) that the on- and off-axis behavior of metal matrix plies can be reproduced under
monotonic and cyclic loading.

Thermomechanical loading is treated in the context of a simple laminate theory by Lee
and Krempl (1988, 1990a) using TVBO. The on- and off-axis behavior of plies and the
residual stresses in laminates made of metal matrix composites are calculated for thermo-
mechanical loading.

TVBO is specialized by Chot and Krempl (1989) for cubic symmetry to simulate the
behavior of single crystal superalioys when loaded in the cube side-, body diagonal-, and
face diagonal-directions under isothermal conditions. The results are promising.

Possible simplification and relation o plasticity

In the present theory, the matrices H, P and the vectors a, b in (14) or (19) have to be
independently selected. Following Sutcu (1985), Sham (1989) suggested replacing Iin (14)
by

=K "\)K 'x). (45

with an analogous definition of © instead of (19). Such a formulation would considerably
reduce the constants needed. Obviously the modeling of tension/compression asymmetry
through the invariants would be lost. However, u further possibility exists to model
tension/compression asymmetry through the initial condition of f, in (31) (Lee, 1989).

In the present theory, all matrix components are constants which can only depend on
temperature. The matrices do not change with the state of stress; only the invariants I' and
© do, together with the stress and equilibrium stress vectors.

In rate-independent isotropic plasticity, the flow rule (tensor notation is used here)

P = 4 - 46
£ a5, (46)

can be rewritten as (sce Yamada et al., 1968 ; Dvorak and Bahei-El-Din, 1982)
é‘f; == Bx’t{,ﬂ‘;&:&;, (47}

with B a scalar expression and M., = (3f/{s,)s.. With the usual assumption of a quadratic
yield surface M, = s,5,. Thus the entries of the matrix M depend on the state of stress.
Specifically, when axial and shear stresses are present, shear stress increments can cause
normal plastic strain increments.

The equivalent of M in the TVBO, the matrix K~ {see (11)] has constant components.
However, it can be seen from (1)~(4) that shear stress increments can cause normal and
shear inelastic strains when shear and normal stresses are present. for both the orthotropic
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and the isotropic formulations. Further, coupling is provided by the invariant I in the
viscosity function k[[] [see (11)~(13)]. It is therefore clear that TVBO has, in these respects,
the same capabilities as the classical plasticity theory.
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APPENDIX: ISOTROPIC VERSION DERIVED FROM THE ORTHOTROPIC VERSION
FOR ISOTHERMAL CONDITION

All orthotropic matrices are replaced by isotropic ones. Specitically, (9) and (10) are placed by

&

(Al)

and

R = v v |—v (A2)

L ]

respectively, where vg = 1 =v=2v? and G = E/(2(1 +v)). The inclastic modulus matrix Ky (12) 1s of the form of
(A1) except that K, and K, replace £ and G, respectively. The inelastic Poisson’s ratio matrix R, is given by (A2)
except that i replaces v, Note that K, = K,/(2(1 + 1)) for the isotropic cuse. In (14), H and & are

TH, H, H, 7
H, H, H,
H, H, H
H= . (A3)

H,
H,

where Hy = H —05Hand @' =[¢ @ a 0 0 O], respectively. )
Corresponding expressions hold for P and b. Also the cocflicient of thermal expansion reduces 1o a scalar.
Next, the theory is reduced to the deviatoric and hydrostatic forms. Ta this end. the following definitions are
wntroduced :

4 <t 1.l
e =" — 'l

L 4 |
s=06-la,l
g =g—lgul
=01

o

' =s—g!
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witht'=[1 1 | 0 0 O} A variable with subscript h is the hydrostatic component. ie. o, =0,+0:+0;.
With these definitions. (1). (3). (4). (28) and (29) can be written as

e = 4" 49
éd - %:lzs (AS)
& = -Ezvd'n (o
g _ 11
¢ ‘x.[ﬂ':x“ (A7
"o l-z'l
Mt -
ul ) x
&= Tw(«#lﬂ“e(‘#m—g'(‘ - wﬁ:—))) xr] >
i, vy )
PRSI (¢m~—®(¢m—5«(' - “E—))) G| o
xd
e All
e E"‘ft{r] ( !
g Al2
Qe o
where
o x 7
1
!
- s . and x|} = K [[)
2
b 2 .

and where T and © arc given by (14) and (19), respectively, using the isotropic version of the material matrices
and vectors [sce (A3)]. When (A3) is used together with Hy = 3H, = 3and ¢ = 0, the invariant T of (14) reduces
to the invanant I, defined in (7) of Yao and Krempl (1985) or the invariant I given in (4) of Krempl and Yao
(1987). If

3

P»=3. P.=‘A§

and b =0,

(19) is

O =~ (W' -y g ~r)". (A13)

!
A
Substitution of (A13) into (A9) using (AS) and (A7) with @[] = @[] yields

i = «:m(f— + .f'_".) M0+ ED-8

éln
ol gt 82
i+v T 1Ty ' -y -ey s (A14)

On the other hand the corresponding equation (2) of Krempt and Yao (1987) is

s L
w = juirte- B ey e, (A15)

Note that E, is defined with respect to the inclastic struin and A is defined as the asymptotic value of g—fin
uniaxial loading. They are related to £ and A* by E? = E,/B and A* = A/B. respectively, with B = (1 + E/E).

In Yao and Krempl (1985) and Krempl and Yao (1987), the growth law for ! is given in total form. The
incremental form (31) or (33) was necessary for the thermal case. The present formulation has essentially the same
modeling capabilities and is simpler than the total form used previously.



