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Abstract-An infinitesimal. orthotropic theory of viseoplastieity based on overstress for thermo­
mechanical loading (TYBOI is presented. The total strain rate is the sum of clastic. inelastic and
thermal strain rates. An orthotropic constitutive law is postulat~'d for each strain rate using the
characteristics of orthotropic matrices and previous isotropic formulations of the viscopl'lsticity
theory as a guide. All material functions and constants I:an be funl:tions ofcurrent tempcmture and
no influence of temperature history is modeled. Yield surfaces and loading/unloading conditions
arc not used in lhe theory in which the inelaslic strain rate is solely a function of the overstress. the
difference between stress and the equilihrium stress. a state variable of the thCt1ry. A companltively
simple theory is l'btained which is capahle of modeling important phenomena like creep. relax.ltil'n.
rate sensitivity. hysteresis. tension/compression ,Isymlllctry and nearly clastic regions. II is '1lso
possihle 10 millie! quasiclaslic behavior in one dirCl.·lion while lhe others behave v;scopl<lstic,llly.
The thcl1fy is shl,wn to retluce to a previollsly proposed formula!il," for inelastic incompressihility
and iSl1lropy.

INTRODUCTION

Continuing demands to increase dliciency and economy of engineering strUl;tures require
that the inelastic load carrying capabilities of materials be utilized. This is especially so for
components of propulsion and powcr generation machinery which operate ,tt elevated
temperature. They have to be designed against creep and creep/fatigue failure due to the
existence of nonlinear creep deformation and due to large and small temperature cycles
which arc repeated during the lifetime of .1 component. A prerequisite for a successful
design is the ability to compute the time-dependent deformations as a function of location
and time in severely loaded components.

For nominally isotropic materials. the inelastic and thermomechanical analysis of
components is now being performed but is still under development. For the case of aniso­
tropic materials such as single crystal superalloys. directionally solidified alloys and metal
matrix composites. anisotropy is added to the list of complicated phenomeml which must
be modeled. All of these .tnalytical methods arc inherently nonlinear and require numerical
methods for their implementation. Fortunately. the growths of computing power and
economy make possible nonlinear analyses in the design of critical and severely stressed
components.

The isothermal methods of anisotropic inelastic analysis range from yield surface
approaches (Lee and Zaver\' 1978: Eisenberg and Yen. 1981. 1984) to phenomenological
formulations using "unified" theories (Stouffer and Bodner, 1979: Robinson. 1983: Dame,
1985; Sutcu. 1985; Sutcu and Krempl. 1986. 1990; Walker and Jordun. 1989). Dame (1985)
and Walker and Jordan (1989) used a "crystallographic" approach where the constitutive
equation of each slip system in a cubie crystal was given by the "unified" constitutive
equation of the respective authors. Following the classical methods ofsingle crystal plasticity
the overall response was obtained by summing up the contributions of each slip system.

The present infinitesimal thermomechanical theory is intended for application to aniso­
tropic engineering alloys for high temperature service in the power generation and pro­
pulsion industries. The intention is to present .1 theory which can model essential m;lcro­
scopic phenomena with the least possible complexity. The behavior of these alloys. which
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include single crystals. directionally solidified alloys and metal matrix composites. is often
very complex. As an example. some alloys may exhibit a strength increase over a limited
temperature range or may show tension/compression asymmetry. As a consequence the
formulation does not start from the notion of an Arrhenius relation between temperature
and strain rate. Any temperature dependence is allowed.

In theoretical treatments. the use of a thermodynamic potential provides consistency
and conciseness and many known constitutive equations can be derived. When new material
laws are the aim. the thermodynamic approach is not directly useful as the means of
experimentation provide measures for stress and strain but not for potentials. Also. as a
minimum. the potential and the growth laws for the state variables have to be postulated
before the mathematical formalism can be employed. In the present approach. the consti­
tutive equation for the inelastic strain rate (the flow law). and the growth laws for the state
variables are postulated. The number of postulates is the same in both cases. Afta the
stress-strain laws are established. the thermodynamic potentials can be constructed.

Rather than using representation theorems and coordinate-free notation (Sutcu. 1985:
Sutcu and Krempl. 1986). material matrices are employed. Representation with respect to
the preferred material axis is assumed. For orthotropy. the matrices are symmetric and
have nine independent constants. Elastic and inelastic Poisson's ratio matrices which
depend only on temperature are introduced in the generalization of the previously proposed
isotropic viscoplasticity based on overstress (VBO) (Yao and Krempl. 1985: Krempl et
al .• 1986: Krempl. 1987). Compressible and incompressible inelastic deformations arc
considered. The orthotropic theory contains transverse isotropy, cubic symmetry and iso­
tropy as special cases.

ORTIIOTROPIC THEORY OF VISCOPLASTICITY BASED ON OVERSTRESS FOR

TIIERMOMECHANICAL DEFORMATION (TVBO)

For the representation of the equations. vector notation is used where stress tensor
components rr" and the small strain tensor components I:" arc related to their vector
components hy

(T\ ::::::: (JIlt (1,::::::: (11,2, (1,::::::: (1.\\, a ... == a~l. (J5::::::: (1.\1, (ih == al~'

and

respectively.
Capital boldface letters denote 6 x 6 matrices. The components of these matrices arc

given with respect to the on-axis, xy: Cartesian coordinate system which coincides with the
material symmetry axes. or with respect to an otf-axis. 123 coordinate system. The com­
ponents are identified by the respective subscripts x, y, : or I. 2. 3. An orthotropic matrix
is symmetric and has nine independent components, see eqn (1.12) of Christensen (1979).

Vectors and matrices are primed and unprimed when referring to the I23-system and
xy:-system. respectively. All constants and functions can depend on T - To. where T is the
absolute temperature and To is a reference temperature. The temperature dependence is
not specially displayed.

The formulation given below represents cyclic neutral behavior and does not include
recovery of state and aging. As a consequence two tensorial state variables and their growth
laws are needed. The modeling of cyclic hardening/softening requires additional stale
variables. These extensions will be proposed in a future paper.

Thejioll'lall'
In the context of an infinitesimal theory. the total strain rate. dr.'/dr. is considered to

be the sum of elastic. dll,c1/dt. inelastic. dll',n/dt. and thermal strain rates. dr.'th/dr.
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(I)

where the sum of the elastic and inelastic strain rate is called the mechanical strain rate.

(2)

A superposed dot represents the total time derivative. d;dt.
For each strain rate. a constitutive equation is postulated. The elastic strain is assumed

to be independent of thermal history. therefore.

"el d (N- 1C- 1M ')8 =-l i(1.

dt
(3)

A superscript - I denotes the inverse of a matrix. As in the case of isotropy. the inelastic
strain rate is only a function of the overstress x. It denotes the difference between the stress
(1 and the equilibrium stress g. a state variable of the theory.

(4)

The thermal strain rate is given by

(5)

In the above. Nand M are the transformation matrices for strain and stress. respec­
tively. They are given as

I: = Nr.',

(1 = M(1'.

(6)

(7)

The elastic modulus matrix C is symmetric. Its components can depend on temperature.
It is written as a product of the diagonal elastic modulus matrix C~ and the matrix Rc of
the elastic Poisson's ratios. The components of the first are the elastic moduli, those of the
latter arc only related to Poisson's ratios. We have

(8)

a superscript t denoting transpose of a matrix

where

£,-,-

and

G,_:

G,.._

(9)
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with

R =c

I - v...:v:.v V ... + V.:V: .. v.:+v ...v•.:
-----

Vo Vo Vo

v,.x + v:.•v,.: I - v.,,:v:x vr: + \'yx\'c

Vo Vo Vo

Y:x + vl'{v:" v: .. +v...Y:x I - vn"'rx

Yo Vo Yo

( 10)

i~1 ..
Vii = - -;cr (l.J = x. y. =. i i=) the elastic Poisson's ratios

f.)

for uniaxial loading in the) direction. They may only depend on temperature. The symmetry
ofC requires the reciprocity relations Y,JEII = I'"/E,, (no sum. i.j = x.y.=.i i=j). [For the
form of the inverse Rc- I. see (37).]

Similarly. the vicosity matrix K is given by

where

KII•

k[r].

K:,

K,\.

(square brackets enclosing a symbol denote "function of") and

(II )

( 12)

with

I -1/..:'1:.•. 1/... + '1x:'1: .. 1/,,+ 1/ ...'1..:
---- -~--_._-

_..__.__ .. ','_._' ------

I/o '10 I/o

'1,.• + 1/:.• '1)': I - '1x:l/:x 1/)': + 1/,·x'1..:._-.---.--
'10 '10 I/o

Rk = 1/:.. + '1n'1,,· 1/". + 1/ ...'1:, I -l/n'1l'{ ( 13)

I/o I/o I/o

·,n
Ei

·,n
[.,

(i.j = x.y. =. i i= j) the inelastic Poisson's ratios
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for uniaxial loading in the j direction. They may only depend on temperature. The function
k[r] has the dimension of stress x time and is the viscosity function of Krempl et al. (1986).
It is positive and decreasing and must be determined for a material. Specific functions that
fulfil the above requirements can be found in Krempl (1982) and Yao and Krempl (1985).
The symmetry of K requires ",,/K,; = ",,/~1 (no sum. i.j = x.y. =. i i= j) and allows only a
common functional dependence of K through k[r]. see (12).

The orthotropic invariant r is given by Krempl and Hong (1989) and Sutcu and
Krempl ( 1990)

( 14)

where x = (1- g is the overstress. H is a dimensionless orthotropic matrix and the vector
at = [a, a, a: 0 0 0]. dimension of stress. is the repository for viscous tension!
compression asymmetry (see Sutcu and Krempl. 1990). (If a is set to zero. viscous
tension/compression symmetry results.) Again H and a are. like the elastic moduli. material
properties and must be determined for a given material.

The vector 'Xl = [2,2,. C1C: 0 0 0] denotes the coefficient of thermal expansion.

Growth lall's/;" ,he state mriah/es

Formulation. The growth law for g' is the repository for modeling elastic regions and
hysteresis. It is given by

The lirst and the last terms represent the elastic and the inelastic contributions to the growth
of~. respectively. The term multiplied by tiT/i), ensures independem;e of thermal history of
the clastic growth of~ (see Lee and Krempl, 1990b).

The newly introduced quantities arc defined as follows:

The diagonal shape function matrix lid which controls the clastic growth is

r/J,.,.[r]

( 16a)

r/J:.,[r]
r/J q[r]

the diagonal shape function matrix 8: associated with inelastic growth is

cPn[r]

8: = (16b)

The functions '/I,Jr] and cP,Jr] are positive and nonincrcasing. They arc patterned after the
shape functions introduced by Krempl and Yao (1985) and Krempl et al. (1986). [I nstead
of making ,/I., and cP" functions of r. they could alternatively be functions of e defined in
(19) below.] The matrix Dd is
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E,xx

Ern·

( (7)

( 18)

where the E'i' are the tangent moduli of the stress-inelastic strain curves at the maximum
strain of interest. They can be positive. zero or negative. The invariant 0 is defined as (see
Stucu and Krempl. 1990)

0' = Izlpz+blzl. (19)

where P is an orthotropic matrix whose component have the dimension of reciprocal stress
squared and the vector bl = [h. h, h, 0 0 OJ. with dimension of reciprocal stress, is
the repository for tension/compression asymmetry of the time-independent contribution to
the stress. z (see SutCtl and Krcmpl. 1990). The vector z is given as

and

z = g-f (20)

(21 )

Asymptotic analyses for the uniaxial isothermal case hy Krempl el al. (1986) and SlItClI
and Krempl (19IN) show that df/dl determines dn/dt ultimately. The purpose of (21) is to
set this slope. When tangent moduli E"I arc equal to zero, stress strain eurves heeome
ultimately horizontal. In this paper the Ell} have to be interpreted as the slopes in a stn:ss
plastic strain diagram at the maximum plastic strain. Substitution of (4) into (21) reveals a
form similar to the Prager-Ziegler kinematic hardening law. Therefore f is called the
kinematic variable or kinematic stress.

Restrictiotls OIl the groll'th lall's j{lr the slate I'ariah/es. In the limit as all rates go to
zero. eqns (I )--(4) show that the stress equals the equilibrium stress. It has also been shown
for the isotropic. isothermal case that the stress approaches the equilibrium stress as the
total strain rate goes to zero in the limit (Cernocky and K rem pI. 1979; Krempl ct al.. 1986),
These facts suggest that whenever the boundary conditions require zero stress components.
the corresponding equilibrium stress components with the initial value zero. must at all
times also be zero. (It is also possible to require that the equilibrium stress components
corresponding to the zero stress components reduce to zero only in the limit as the rates go
to zero. This approach will not be pursued here,) These conditions must hold for arbitrary
1\1 and N. Therefore the following restrictions must be imposed on the matrices which
appear in (15) and (21). ( is the 6 x 6 identity matrix.

(22)

(23)
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B*K- 1 q2 I
d d = k[f] ,

iP,Af] iP,,-[f] rP:Af] iPo[f] iP,Af] rP:,[f]
q, =-- =--- =-- =-- =-- =--,

- Ku K,_,_ K:: Kn K,: K:.,
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(24)

(25)

(26)

(27)

The viscosity factors, K'j' have dimension stress and k[f] has the dimension time. The
dimensionless factors lit and q2 are called modified shape functions; they control the shape
of the stress-strain diagram. When these conditions are implemented. the growth laws of
the state variables are reduced to

, .
• (Clt X

0' = llt iT' + T ----(1' + (q, -0«(1' - n( 1-III))) ---
"" ('T' -' r k[rr

. I'
f' =k[r] x'.

(28)

(29)

These cquations replace, in consecutive order, the more complicated cquations (15) and
(21). All other equations remain unchangcd.

If the unrestrictcd cqu;ltions (15) and (21) werc to be used. thcn cquilibrium strcss
components could develop when therc arc no corresponding stress components. The "extra"
equilibrium components could causc the numerical solution to become unstable and could
lead to unexpected and unrealistic results. Examples are given by Sutcu (1985).

It should be noted that orthotropy is maintained with (28) and (29). The orthotropic
invariants rand e are unrestricted and they enter nonlinearly into the equations. Also the
viscosity factors K'j can be chosen independently of the elastic moduli when qt t= Q2'

The growth law for the equilibrium stress looks somewhat unfamiliar since it is written
in terms of stress rate and overstress. Substitution of (3) and (4) into (28) and (29), using
(25)--(27), yields the familiar forms in terms of strain rates,

(30)

(31 )

The anisotropic nature of (30) and (31) is apparent. We have found it useful and easy to
work with (28) and (29) rather than with the familiar but complicated equations (30) and
(31 ).

Reduction to plane stress/strain

Plane stress. Let (1), (14 and (1 ~ be the zero stress components and let the :-axis coincide
with the 3-axis. If the initial conditions of the stress and the equilibrium stress components
with indices 3, 4 and 5 are zero, then they will always stay zero on account of (28). The
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same argument can be made for the components off. Therefore the stress. strain. and stat~

variable vectors are given by

£" =[£1 £~ I:"J.
(1" = [a l (J~ (J "j,

g" = [,iJl g~ g,.].

f" = [/1 r~ j~J. (32)

The out-of-plane component of the strain is entirely determined by in-plan~ components
and is given by

Planc strain, In this case £J' CJ and /-:5 are set equal to zero, If the initial conditions of
the stress and the equilibrium stress with indices 4 and 5 are zero, then these quantities and
the kinematic stress will remain zero. The out-of-plane components of the stress. equilihrium
stress and kinematic stress develop and contrihute to the invariants rand (-).

DISCUSSION

General remarks
This orthotropic TVBO not only applies to the case of variahle temperature hUl

generalizes the simplified isothermal version with constant Poisson's ratio. presented hy
Sutl:u and Krempl (1990), It will be shown below that a variable Poisson's ratio can he
represented with the present theory. Setting aside the thermal aspects, the present theory
difrcrs from that given by Sutcu and Krempl (1990) by the introduction of the inelastic
Poisson's ratio matrix Rk and by the formulation of the growth laws for the equilihriulll
stress ~ allllthe kinematic variable r in terms of stress and overstress as given by OX) and
(29). This formulation is advantageous in numerical calculations and in manipulations.
This theory retains all the properties demonstrated by Sutcu and Krempl (1990) which
includes tension/compression asymmetry, quasi-elastic behavior in one direction and visco­
plastic behavior in the other directions, orthotropic strain rate sensitivity, creep. and
relaxation. Recovery of state and aging as well as cyclic hardening/softening an: not part
of the present theory but will be incorporated in the future.

Since the formulation of the present theory assumes that the material constants arc
functions of current temperature only, the asymptotic rate response and the ultimate level
of g - f are independent of temperature history, For any history which ends up with the
same temperature and the same mechanical strain rate, the model predicts ultimately the
same stress rate response. Such behavior is reported by Chan and Lindholm (1990). If
metallurgical changes, such as phase changes and strain aging, occur, independence of
thermal history may no longer be an adequate assumption and the model will have to be
modified to account for thermal history ctfects (see Lee and Krempl. 1990b). Independelll:e
of thermal history implies that the constants and functions of the theory can be determined
from isothermal tests at a sequence of constant temperatures and then applied to thcrmal
loading within these temperature ranges. The partial derivatives with respect to temperature
in (15), (28) and (30). which arc introduced to modd dastic deformations independent or
thermal history. will innuence the transient and asymptotic behavior under temperature
changes. These arc introduced in response to recent observations in the modeling or hys­
teresis under thermal and mechanical cycling (Walker, 1981 : Moreno and Jordan. 1986:
Chaboche, 1987). The implications of these terms in modding thermomechanical behavior
arc investigated systematically by Lee and Krempl (1990b),

The present theory involves two modified shape functions ql and q~ and the growth
law for the kinematic variable f has only inelastic growth, But the isotropic theory proposed
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by Yao and Krempl (1985) and Krempl and Yao (1987) has one shape function and the
growth law for the kinematic variable fhas both elastic and inelastic growth. When q, =q~

and Kij = Eij • the elastic moduli and tangent moduli at the maximum strain of interest are
related by (27). In addition. reduction to the isotropic case makes the elastic Poisson's ratio
equal to the inelastic Poisson's ratio. Introducing q, and q~ avoids this restriction. The
purpose of f is to set the slope at the maximum strain of interest; (29) or (31) accomplish
this goal and are simpler than the growth laws previously used. This new formulation was
also adopted by Nishiguchi et al. (1990).

Variable Poisson's ratio
In analogy to the definitions following (10) and (13), the actual variable Poisson's ratio

based on strain rates is introduced as

(34)

for the uniaxial loading in the j direction. From eqn (2) and the definitions of the elastic
and inelastic Poisson's ratios, following (10) and (13), respectively, the actual Poisson's
ratio can be written in terms of the elastic and inelastic Poisson's ratios,

'me d el. -in
"Ii;£; =dt(V,;£;)+'1ij f.j' nosumonj, i,j=x,J',=, ;i=j. (35)

Since the loading is uni<lxial. (35) can be expressed in terms of stress rate and overstress.
From (2), (3), (4), (12) and (35)

(36)

(no sum on j, ;,1' = x,y,=,; i= 1'). When the clastic and the inelastic Poisson's ratios arc
given, (36) permits the calculation of the actual Poisson's ratio.

For multiaxialloading the actual variable Poisson's ratio matrix based on rates, Rm,

can be written as

R 1-
m -

-Yx~ -y,..

-Yrx -Y,r:

-Y:.< -Y:"
(37)

and can be used to construct the mechanical strain rate vector

(38)

From (2), (3), (4), (10), (13), (37) and (38), a relation between R.., R. and R.. can be inferred,

(39)

A constant Poisson's ratio was assumed by Sutcu and Krempl (1990). This possibility
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is contained in the present theory. For temperature-independent material properties and
Vi} = 'Ii]. the Poisson's ratio Y" determined from either (36) or (39) is equal to v'r

Inelastic incompressibility. inrariance of inelastic deformation under superposed pressure.
tension/compression symmetry

In the derivation of isotropic theories of rate-independent plasticity. inelastic incom­
pressibilityand invariance under superposed pressure are used interchangeably to formulate
the inelastic strain as a function of the stress deviator and its invariants. When only
quadratic invariants are used. tension/compression symmetry follows.

Each of these conditions leads to different reductions when applied to the present
orthotropic theory.

Inelastic incompressibility. In plasticity theory it is generally assumed that the inelastic
strains are volume preserving. So far this condition has not been used. Inelastic incom­
pressibility requires

(40)

From (4) and (40). and since X,. X, and x: are arbitrary. the inelastic incompressibility
condition is uniquely satisfied by setting

'1 ... + '1" ::::: I.

'I" +'1:, ::::: I.

'1" + 'I,: ::::: l.

Since K is symmetric [see (II»). (41) can be expressed as

(
Krr K,.\.)

'Ill' ::::: 0.5 1- K:: + K" .

(
K.. K..)

'I,: == 0.5 1- K" + {- .
t't IT

( Kn K,,)
'b ::::: 0.5 I --;,-:- + -1<.>- .

fin ::

(41 )

(42)

For the case of isotropy or of cubic symmetry (K" ::::: K'T::::: K::). the inelastic Poisson's
ratios are equal to 0.5 as they should be. By substituting either (41) or (42) into (4), an
orthotropic theory for inelastic incompressibility is obtained. Note. however. that the
growth I<IWS (28) and (29) must be used. The m'ltrix Rk does not exist and (30) and (31)
arc not useful.

iTll'ariance ofinelastic deformation under superposedpressure. Invariance of the inelastic
deformation under superposed pressure requires that (41) or (42) hold in addition to

and

H.. +H,,+H,: = O.

H,,+f1II.+H,: = O.

H,: + II,.: + II:: = 0

a, +a,. +a: = O.

(4.1)

(44)
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as well as similar conditions on P and b. Note that invariance under superposed pressure
requires inelastic incompressibility but does not imply tension/compression symmetry.

Tension/compression symmetry. By setting a:: 0 and b = 0, tension/compression sym­
metry can be modeled. This condition can be applied whether or not inelastic incom­
pressibility or invariance of inelastic deformation under superposed pressure is represented.

Reduction to isotropy
In this case all orthotropic matrices are replaced by the corresponding isotropic ones

as shown in the Appendix. There are two independent elastic moduli, two independent
inelastic constants (the viscosity function and the inelastic Poisson's ratio), two shape
functions (t/J could be set equal to 4», one tangent modulus, two isotropic invariants, and
the coefficient of thermal expansion. The model consists now of (I). (3), (4), (5), (14), (19),
and (28). (29) with all the orthotropic matrices replaced by the corresponding isotropic
ones.

To show that the isotropic model derived from the orthotropic version corresponds to
the one initially proposed by Yao and Krempl (1985). the isotropic version is written in
terms of deviatoric and hydrostatic components in the Appendix. In this version the
condition of inelastic incompressibility has not yet been invoked and therefore all deviatoric
and hydrostatic components can be calculated.

{ndastic illcomprt'ssihility. Setting ,,== 0.5 in (A8) invokes the inelastic incom­
pressibility condition and renders Xh indeterminate in (A7). However. the growth laws for
the hydrostatic component of g and (1 in (A 10) and (A6), respectively. permit the deter­
mination of X h . With Xh known,fh can be calculated from (A 12). The present theory permits
the calculation of ,111 hydrostatic components in the presence of inelastic incompressibility.
This is accomplished by the "stress formulation" of the growth laws for g and f adopted in
(2g) and (29), n.:spectively.

Even if inebstic incompressibility is assumed by setting" = 0.5. the model can still
predict a superposed hydrostlltic pressure effect for inelastic deformation and tension/
compression asymmetry through the invariants rand 0. Generally, it is assumed that
inelastic inl;ompressibility or tension/compression symmetry arc synonymous.

Inelllstic illvariance under superposed pressure. To have the inelastic strain invariant
under superposed pressure, we have to require that" = 0.5, a = 0, H2 ::= 3111, b =0 and
p 2 = 3PI' In this case inelastic incompressibility and tension/compression symmetry follow.
With these stipulations, the invariants rand 0 become second invariants of deviators.

Tt'II.\'ion/compression symmetry. To model tension/compression symmetry of inelastic
deformation alone, a = 0 and b = 0 are required.

Relation to prel'iously proposed isotropic theory. When invariance under superposed
pressure is invoked (which results in tension/compression symmetry), the equlltions of the
Appendix reduce to the theory presented by Vao and Krempl (I9H5) and Krempl and Vao
(1987) with the exception of the growth laws for g and f. Vao and Krempl (1985) write
eqns (I H 10) without a distinction between elastic and inelastic Poisson's ratios. Poisson's
ratio was set equal to 0.5 after the equations had been reduced to component forms. The
indeterminacy ofeqn (15) ofVao and Krempl (1985) for this case was therefore not realized.
The eq uations given by Krempl and Vao (1987) distinguish between clastic and inelastic
Poisson's ratios in the flow law, but use the value 0.5 for the growth laws of g and r, see
(1,2) of Krempl and Vao (1987).

The difference between the present formulation and the one of Krempl and Yao (1987)
is evident by examining (AI4) and (AI5). By setting" = \. ::= 0.5 in (AI4). eqn (AI5) is
obtained except for the direction of the last term. It is in the direction of the inelastic strain
rate in the present theory, but in the direction of the difference between the deviators of the
equilibrium stress and the kinematic stress in Krempl and Yao (1987). The formulation
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similar to (A 14) was introduced by Sutcu (1985) for mathematical convenience after it had
been shown in some numerical experiments for the uniaxial case that the two formulations
in Sutcu (1985) and Krempl and Yao (1987) differed insignificantly. The differences for
multiaxialloading need to be explored. It is interesting to note that a similar modification
was introduced by Burlet and Cailletaud (1987) in the context of the growth law for the
backstress in a rate-independent formulation.

The consistent formulation in terms of elastic and inelastic Poisson's ratios which leads
to (A 14) was independently proposed by Nishiguchi (see Nishiguchi et al.• 1990).

Modeling oj real material behal"ior
Papers by Krempl and Hong (1989) and lee and Krempl (1988. 1990a) deal with the

numerical simulation of metal matrix composites under isothermal and variable temperature
conditions. Therefore no applications are given here.

The present theory generalizes the theory introduced in Krempl and Hong (1989) to
the cases of variable Poisson's ratio and temperature. It is shown in Krempl and Hong
(1989) that the on- and off-axis behavior of metal matrix plies can be reproduced under
monotonic and cyclic loading.

Thermomechanicalloading is treated in the context ofa simple laminate theory by lee
and Krempl (1988. 1990a) using TYBO. The on- and olf-axis behavior of plies and the
residual stresses in laminates made of metal matrix composites are calculated for thermo­
mechanical loading.

TYBO is specialized by Choi and Krempl (1989) for cubic symmetry to simulate the
behavior of single crystal superalloys when loaded in the cube side-. body diagonal-. and
face diagonal-directions under isothermal conditions. The results arc promising.

Possihft, simpli{iclltimlllnd relation to plasticity
In the present theory. the matrices H. P and the vectors a. bin (14) or (19) haw to be

independently selected. Following Sutcu (1985). Sham (1989) suggested replacing r in (14)
by

(45)

with an analogous definition of 0 instead of (19). Such a formulation would considerably
reduce the constants needed. Obviously the modeling of tension/compression asymmetry
through the invariants would be lost. However. a further possibility exists to model
tension/compression asymmetry through the initial condition of f. in (31) (lee. 19H9).

In the present theory. all matrix components arc constants which can only depend on
temperature. The matrices do not change with the state of stress; only the invariants rand
o do. together with the stress and equilibrium stress vectors.

In rate-independent isotropic plasticity. the flow rule (tensor notation is llsed here)

(46)

can be rewritten as (see Yamada et al.• 1968; Dvorak and Bahei-EI-Din. I1JH2)

(47)

with B a scalar expression and Af'lkl = (iJf/iJS,j)Skl' With the usual assumption of a quadratic
yield surface M'lk! = S,ISkl' Thus the entries of the matrix M depend on the state of stress.
Specifically. when axial and shear stresses are present. shear stress increments can cause
normal plastic strain increments.

The equivalent of M in the TYRO. the matrix K 1 [see (II)] has constant components.
However. it can be seen from (I )-(4) that shear stress increments can cause normal and
shear inelastic strains when shear and normal stresses are present. for both the orthotropic
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and the isotropic formulations. Further. coupling is provided by the invariant r in the
viscosity function k[f] [see (II H 13)]. It is therefore clear that TVBO has. in these respects.
the same capabilities as the classical plasticity theory.

A('kn,,,,It:,~,!ements-This research was supported by DARPA/ONR Contract NOOOI4-86-K0770 with Rensselaer
Polytechnic Institute. Discussions with S. H. Choi. T. L. Sham and N. M. Yeh helped to clarify several issues.
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APPENDIX; ISOTROPIC VERSION DERIVED FROM THE ORTHOTROPIC VERSION
FOR ISOTHERMAL CONDITION

All orthotropic matrices arc replaced by isotropic ones. Spt.'Citkally, (9) and (lOI are placed by

respectively. where v" = 1- "- 2,,1 and G = E/(2( I+ v». The inelastic modulus matrix K~ (12) is of the form of
(AI) eJtcept that K, and K 1 replace Eand G. respt.'Ctively. The inelastic Poisson's mtio matrix Kk is given by (A2)
ex.cept that tr replaces v. Note that K 1 = K.!(2( I + ,/» for the isotropic case. In (14). II and a arc

u=

H, 1/ 1

H] ",

H, Il,

If,

HI

H,

H~

(A))

whcrell,=1I,-O.5111 itnda'=Ia (/ II 0 () O).rcspt.'Ctivcly.
Cor~esponding expn:ssions hold for P and b. Also the coefficient of thermal expansion reduces to a scalar.
NeJtt. the theory is reduced to the deviatoric and hydrost;\tic forms. To this end. the following definitions arc

introduced:

eel ~ Bel - ~r.~1 I

c· n = .,n - .\f.~" I

s=(1-.\17.1

gJ = g-l9h I

r'=r-\Jh l

x." = 5-':"
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with It = [I I I 0 0 01. A variable with subscript h is the hydrostatic component, i.e. a. = a, +a:+ CI J.

With these definitions, (I), (J), (4), (28) and (29) can be written as

e = ed+e'n (M)

'd I+V I . (AS)e =T:5

.•, I-2v . (A6)e. =~CI.

"n I +/1 I 4 (A7)e =-- ,x.K,[11 .

... 1-2/1 (AS)a;; = I(,[f] X.

*4 = '''~I15+(4)(Il-e(4>(f]-E,(I- "'~Il))) I(~~ (A9)

"'{Il ( ( ("'[11))) x. (AIO).tih = Tah+ 4>{Il-e 4>(Il-E, 1- T 1(,[11

x.4
(All)t" = E'I(,[11

J, Xh (AI2)• = E, I(,{f]

where

2

2

2

• and I(,{f( = K,k{fl

and where rand e arc given by (14) and (19), res~'Ctivcly, using the isotropic version of the material matric,"'S
and vectors [sec (A3l1. When (AJ) is used together with H: = JII, = J and (I =O.the invariant r of (14) reduces
to the invariant r" defined in (7) of Vao and Krempl (1985) or the invariant r given in (4) of Krempl and Vao
(1')87). If

J
P: = J. P, = Ai and b = 0,

(19) is

(At3)

Substitution of (A 13) into (A9) using (AS) and (A7) with (PIn = "'{f( yields

(AI4)

On the other hand the corresponding equation (2) of Krempl and Vao (1987) is

(AI5)

Note that E, is defined with respect to the inelastic strain and A is defined as the asymptotic value ofg-fin
uniaxial loading. They are related to ~ and A· by ~ = E,/B and A· = AlB. respectively, with B = (I +EdEl.

In Vao and Krempl (1985) and Krempl and Vao (1987), the growth law for r' is given in total form. The
incremental form (31) or (JJ) was necessary for the thermal case. The present formulation has essentially the same
modeling capabilities and is simpler than the total form used previously.


